Disclosure

- Principal investigator for FDA iVue OCT trial
- Principal investigator Topcon FDA trials
 - FDA Topcon NDB Maestro and OCT 2000
 - FDA Topcon OD and Retina study
 - FDA NDB II study
 - FDA Maestro AP II study
- Principal investigator FDA Zeiss GDx PRO NDB study
- Consultant for Optovue and Topcon
- Speakers bureau Sanofi- Genzyme and Allergan

Outline

- Background and diagnosis
- Exfoliation syndrome and exfoliation glaucoma
- Pathogenesis
- Other ocular changes
- Systemic disease
- Treatment options
- Cases
Terminology

- "true" exfoliation of lens - exfoliation syndrome
 - Common in glass blowers - no protection against infrared radiation
 - Not commonly associated with glaucoma
 - Also seen in cases of inflammation, trauma and older age group
 - Capsular delamination of lens

Terminology cont...2

- "pseudo-exfoliation" syndrome
- The exfoliation syndrome
- Historically it was considered to be deposits of unknown material on lens and anterior segment.
- Subsequently it was identified to be in part at least from the lens

- The exfoliation syndrome (XFS) or pseudo-exfoliation syndrome mean the same

Characters

- Deposit of distinctive fibrillar material
- Precise origin unknown (partly lens and iris)
- Histologically found on lens epithelium and capsule, pupillary margin, ciliary epithelium, iris pigment epithelium, iris stroma, iris blood vessels and subconjunctival tissue
Best seen post dilation
Zones of deposit are separated by intermediate clear area
Material visible on iris at pupillary edge

Case 1 -
- 67 year-old woman from Finland
- "White flakes on lens noted in 2000
- IOP elevated OS > OD (24 vs. 19)
- Systemic Hx: HTN, hypercholesterolemia, CAD

Courtesy Dr. Richard Madonna SUNY
About 7 years later

Epidemiology – exfoliation syndrome
- Not just in Scandinavia, Greece, and Italy – common worldwide
- Exfoliation syndrome (XFS) is a significant risk factor for exfoliation glaucoma (XFG)
- About 30% of XFS develop XFG in lifetime

Prevalence and Incidence
- Prevalence: The number of instances of a given disease or other condition in a given population at a designated time.
- Incidence: The number of instances of illness commencing, or persons falling ill, during a given period in a specified population.
 - Very difficult to ascertain.
 - Example Early glaucoma needs to be followed for a long period of time.
Prevalence of exfoliation syndrome

<table>
<thead>
<tr>
<th>Location</th>
<th>Age</th>
<th>Prevalence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia (Aborigines)</td>
<td>> 60 yrs</td>
<td>16.3%</td>
<td>Taylor et al 1977</td>
</tr>
<tr>
<td>Australia (Blue Mountain)</td>
<td>> 48 yrs</td>
<td>2.3%</td>
<td>Mitchell et al 1999</td>
</tr>
<tr>
<td>Iceland (Reykjavik)</td>
<td>> 49 yrs</td>
<td>10.3%</td>
<td>Jonasson et al 2003</td>
</tr>
<tr>
<td>Middle Sweden</td>
<td>65-74 yrs</td>
<td>18.0%</td>
<td>Ektrom 1987</td>
</tr>
<tr>
<td>Middle Finland</td>
<td>> 64 yrs</td>
<td>21.0%</td>
<td>Krause et al 1988</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>> 39 yrs</td>
<td>9.3%</td>
<td>Summanen et al 1988</td>
</tr>
<tr>
<td>South Africa</td>
<td>> 39 yrs</td>
<td>6.0-7.7%</td>
<td>Rotchford et al 2003</td>
</tr>
<tr>
<td>South India</td>
<td>> 39 yrs</td>
<td>6.0%</td>
<td>Krishnadas et al 2003</td>
</tr>
</tbody>
</table>

Prevalence of exfoliation glaucoma

<table>
<thead>
<tr>
<th>Location</th>
<th>Age</th>
<th>Prevalence of XFG in XFS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>> 70 yrs</td>
<td>5%</td>
<td>Hirvela 1994</td>
</tr>
<tr>
<td>Australia (Blue Mountain)</td>
<td>> 48 yrs</td>
<td>14.2%</td>
<td>Mitchell et al., 1999</td>
</tr>
<tr>
<td>Greece</td>
<td>> 39 yrs</td>
<td>4.5%</td>
<td>Kozobolis et al., 2000</td>
</tr>
<tr>
<td>Iceland (Reykjavik)</td>
<td>> 49 yrs</td>
<td>12%</td>
<td>Jonasson et al., 2003</td>
</tr>
<tr>
<td>South Africa</td>
<td>> 39 yrs</td>
<td>2.3 to 2.8%</td>
<td>Rotchford et al., 2003</td>
</tr>
<tr>
<td>South India</td>
<td>> 39 yrs</td>
<td>7.5%</td>
<td>Krishnadas et al., 2003</td>
</tr>
<tr>
<td>Middle Norway</td>
<td>> 64 yrs</td>
<td>5.0%</td>
<td>Ringold et al., 1992</td>
</tr>
</tbody>
</table>

Incidence

- Only one study
- Age and sex adjusted incidence 9.9 per 100,000 per year
- Incidence increases significantly with age
- 0.6 per 100,000 in 40-49 yrs
- 114.3 per 100,000 > 79 yrs
- Incidence greater in females compared to males

- Karger RA et al., J Glaucoma 2003
Features of XFS

1. Central disc corresponds to size of pupil, not always seen
2. Clear zone - removal of material by iris movement
3. Peripheral granular zone due to undisturbed accumulation

Image courtesy Gabor Hollo
Other lens findings
- Phacodonesis
- subluxation of lens
 - Due to degenerative changes in zonular fibers

Why?
- The XFS material is also found on zonules and it contains proteolytic enzymes

XFS and angle closure
- In prone position anterior lens movement can occur – pupillary block
- thus increased chances of angle closure
Post-op complications

- Production of XFS material continues after cataract extraction
- May cause late decentration or even subluxation of lens implant

Iris changes

- Don't dilate well - deposits on iris stroma muscle and degeneration of sphincter and dilator
- White flecks in pupillary margin
- Loss of pigment in pupillary margin
- Iris transillumination defects – moth-eaten pattern

Retroillumination in exfoliation syndrome

Loss of pupillary ruff
Iris changes Fluorescein angiography
- Hypoperfusion
- And neovascularization
- Increases with age and duration of disease
- Why?
- Vessels blocked with material- causing hypoxia

Parodi et al. Acta Oph Scan. 78(4); 437-442. 2000

Iris pigment and acute rise in IOP
- Dispersion of melanin post pharmacological dilation
- May result in acute IOP rise
- Check IOP post dilation

Gonioscopy in exfoliation syndrome
- TM heavily pigments
- Pigment deposition on Schwalbe's line referred as Sampaolesi's line
- Uneven pigmentation
- Chamber narrow presumably due to forward movement of lens-iris diaphragm
Sampaolesi line

- Chronic pressure elevation due to increased outflow resistance.
- Particularly with deposits juxtacanalicular tissue beneath the inner wall of Schlem's canal.
- Pigment deposits may also play a role.

Image courtesy Gabor Hollo

Trabecular meshwork

- Chronic pressure elevation due to increased outflow resistance.
- Particularly with deposits juxtacanalicular tissue beneath the inner wall of Schlem's canal.
- Pigment deposits may also play a role.

Image courtesy Gabor Hollo
Cornea

- Corneal endothelium may show some adhering XFS material
- Specular microscopy of corneal endothelium - low cell density
- Morphological changes also seen

Exfoliation keratopathy

What is Exfoliation keratopathy?

- Active involvement of corneal endothelium
- Clinically
 - Reduced endothelial count (800-1500 cells/mm²)
 - Changes in cell size and shape
 - Retrocorneal flakes
 - Pronounced melanin deposits on corneal endothelium
 - Irregular thickening of Descemet's membrane
 - No corneal guttata
Clinical and histopathological features

<table>
<thead>
<tr>
<th></th>
<th>Fuchs's dystrophy</th>
<th>Exfoliation keratopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corneal guttata</td>
<td>+++</td>
<td>atypical</td>
</tr>
<tr>
<td>Endothelial cell loss</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Decompensation pattern</td>
<td>Central</td>
<td>diffuse</td>
</tr>
<tr>
<td>Melanin dispersion</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Iris atrophy</td>
<td>absent</td>
<td>+ to +++</td>
</tr>
<tr>
<td>Nuclear cataract</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Secondary glaucoma</td>
<td>absent</td>
<td>Absent/+++</td>
</tr>
<tr>
<td>Descemet's membrane</td>
<td>Focal guttata</td>
<td>Diffuse thickening</td>
</tr>
<tr>
<td>Thickness of Descemet's</td>
<td>14-30 microns</td>
<td>16-45 microns</td>
</tr>
<tr>
<td>Exfoliation material</td>
<td>Absent</td>
<td>Absent to +++</td>
</tr>
<tr>
<td>Melanin phagocytosis</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>

+ mild; ++ moderate; +++ marked

Clinical significance of exfoliation keratopathy

- Corneal decompensation may develop in both normotensive and hypertensive eyes
- Lowering IOP may reverse decompensation effects in early stages
- Later stages may need penetrating keratoplasty
- Edematous cornea higher risk of infection and ulceration
- Pre-operative counseling
Unilateral or bilateral disease?

Clinically
- Often appears unilateral
- May remain so for a long periods
 - Tarkkanen 48% of Caucasians unilateral
 - Shimizu et al 85% of Japanese population unilateral
- Signs may be subtle and even experienced observers miss 15% of cases
- First signs to typical presentation 5-10 years.

Unilateral to bilateral
- 11-14% in 5 years
- 16-32% in 7 years
- 36-52% in 10 years
- XFS possibly asymmetric rather than unilateral
Impaired blood flow

- XFG > XFS
- Blood flow could be low because of elevated IOP
- Sibour et al., POBF decreased
 - Affected eyes when compared to fellow eyes
- Mistlberger et al., POBF same in eyes with and without XFS
 - But XFG low POBF

Pneumotonometer

- IOP: 200 /sec
- Up to 20 seconds
- Measures 7 pulses and selects 5 best to calculate IOP and POBF
- Also gives pulse amplitude and calculates pulse volume
Pulsatile ocular blood flow

Pascal - Dynamic Contour Tonometer

Ocular Pulse Amplitude in Normal Tension and Primary Open Angle Glaucoma

Ingeborg Stulmann, MD, PhD* Alan Harris, PhD† Veerle Vanbellinghen, BSc.* Thierry Zeyen, MD, PhD* and Brent Sinsky, PhD†

Conclusions: OPA is reduced in normal tension and POAG patients compared with healthy controls. OPA is influenced by IOP, but not by corneal thickness.
Vesti et al., macular capillary blood flow decreased XFG compared to controls.

Ocakoglu et al., scanning laser doppler flowmetry decreased blood flow in optic nerve head and peripapillary retina (XFS compared to controls).

Variability seen with POBF are also seen with measurement of capillary blood flow using both entoptic phenomenon and doppler flowmetry.
Summary ocular hemodynamics – XFS and XFG

- Blood flow may be decreased in these conditions
- Measurement variability of blood flow makes it not ideal for use clinically.

Is exfoliation syndrome systemic disease?

Exfoliation material

- Presence of exfoliation material is not restricted to intraocular tissues
- Conjunctiva, orbital tissue, extraocular muscles, optic nerve, ciliary arteries
- Systemically- skin, lungs, heart muscle, vessel walls, liver, kidney, gall bladder and cerebral meninges
XFS and XFG- systemic diseases
- Not clearly understood
- Increased rate of morbidity of cardiovascular, cerebrovascular disease and alzheimers disease and XFS
- But not increase in mortality
- Elevated plasma homocystein levels- related to increased risk of venous occlusion
- Mild sensory hearing loss is also reported

Summary
- XFS is a systemic disease
- But the role of exfoliation material in causing or exaggerating the systemic diseases remains to be clarified.

Development of exfoliation glaucoma
Risk of glaucoma in XFS

- Exfoliation increases the relative risk of glaucoma
 - Ekstorm et al., - 9.8 fold
 - Mitchell et al., - 5 fold

- Even after adjusting for IOP the relationship between XFS and glaucoma was unchanged

- XFS without high IOP is an independent risk factor in glaucoma development

So if IOP is not “the” mechanism on normotensive XFG what is?

- Exfoliation material found in posterior ciliary artery and vortex veins
 - Disturbance in perfusion in posterior ocular tissues

Ocular hypertension with and without XFS

- Risk of glaucoma due to ocular hypertension was 3.7 times
- XFS and ocular hypertension increases the risk much higher up to 67 fold
Role of pigment dispersion

- XFG has greater pigment accumulation in angle compared to XFS
- Degree of pigmentation and exfoliation material in angle correlates positively with IOP

Development of glaucoma in normotensive and hypertensive eyes

- Normotensive eyes with XFS show elevation of IOP over time
- Likelihood of development of ocular hypertension
 - 5.3% over 5 years
 - 15.4% over 10 years
- Glaucoma twice as common in XFS with ocular hypertension when compared to only ocular hypertension
 - 35% vs 18% in 9 years (Puska et al., 1995)

Conversion rate XFS to XFG

- 32% 10 years (Puska et al., 1995)
- Conversion was rapid- 2/3rd in 3 years
- 94% in 5 years
- Most eyes high pressure glaucoma
- All patients except one with high pressure developed glaucoma
- Baseline parameters- rim area is lesser in converters when compared to non-converters
- XFS shows greater diurnal variations
Fellow eye of unilateral XFG

- 21-26% risk of developing glaucoma in 5 years (Puska et al., 1995)
- Almost all became bilateral over time

Onset of glaucoma related to exfoliation material

- No set pattern
 - Simultaneous
 - After
 - Long after
 - May precede

Intraocular pressure and XFG

- Higher mean IOP compared to POAG
 - Often exceed 35 mmHg
- Greater 24 hour IOP fluctuations both in XFS and XFG
 - Normals <5 mmHg vs normotensive XFS 50% 5 mmHg
 - 10% normotensive XFS showed 10 mmHg fluctuations
Intraocular pressure and XFG

- Significant diurnal IOP fluctuations may differentiate XFG from POAG
- 50% of XFG show peak IOP outside office hours
- Greater IOP fluctuations may account for faster progression in XFG

Summary

- Presence of XFS represents risk of development of XFG
- In eyes with XFS but normal IOP risk of conversion to XFG is 30% in 10 years
- Most convert in 5 years
- XFS and ocular hypertension combined has twice the chances of developing glaucoma when compared to only ocular hypertension
- 24-hour diurnal variations may be greater in XFS and XFG patients compared to controls.

Clinical features of XFG

- High IOP, open angle
- Exfoliative trabeculopathy
- Iridopathy, phacopathy, zonulopathy
- Significant diurnal fluctuations
- IOP spikes
- Pigment dispersion
- Acute IOP rise after pupillary dilation
- Aggressive course, rapid progression
- Poor response to medications
- Need for surgery common
Diurnal variation of IOP

Konstas et al., 1997 ArchOphthalmol

Temporary devices contact lenses

Temporary devices

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Non invasive</td>
<td>• Eye movement may have greater effect when compared to permanent devices</td>
</tr>
<tr>
<td>• not permanent</td>
<td>• Surface tension, light exposure, temperature</td>
</tr>
<tr>
<td>• can be used on ad-hoc basis</td>
<td>• Reproducibility</td>
</tr>
</tbody>
</table>
Triggerfish

Cost 500 Euro. Not available for sale in USA

Cataract surgery and XFS

- Careful pre-operative evaluation to identify XFS and weak zonules
- Max pupil dilation should be noted as pupils tend to not dilate well
- Risk of surgical complications should be discussed
 - Capsular tear, vitreous loss
 - Dislocation of IOL
Medical therapy in XFS and XFG

- Generally medical therapy is not very effective
- May be due to worst IOP characteristics rather than lack of response to medications
 - High mean IOP
 - IOP fluctuations greater
 - High IOP spikes

Target IOP in XFG

- Like in all glaucoma IOP lowering decreases the chances of progression but does not guarantee it
- XFG patients with mean IOP less than 17 mmHg only 28% progressed compared to 70% mean IOP ≥20mmHg
Protocols of treatment

- Similar to POAG
- But monotherapy not always successful
- Maximal therapy required
- Miotics may have a role to play-
 - pupil is fixed so less pigment dispersion
 - May help outflow and removal of materials
- Systemic aqueous suppressants not suitable- decreases trabecular function over time
- Often early surgery

Medical therapy- timolol

Medical therapy- timolol versus latanoprost

Konstas et al., 1997 ArchOphthalmol

Konstas et al., 2004 Eye
Which prostaglandin?

- Structurally all prostaglandins are similar
- One study shows that Travoprost works better than latanoprost
- Another study showed 3 months IOP control better with Bimatoprost versus latanoprost

- Latanoprost, travoprost, and unoprostone are ester prodrugs
- Bimatoprost described as prostamide (nitrogen attached to carbonyl group)

A Comparison of Latanoprost, Bimatoprost, and Travoprost in Patients With Elevated Intraocular Pressure: A 12-week, Randomized, Masked-evaluator Multicenter Study

CONCLUSIONS: Latanoprost, Bimatoprost, and travoprost were comparable in efficacy to reduce IOP in OAG and DGH patients. Latanoprost exhibited greaterocular tolerability. (Am J Ophthalmol 2003; 135: 280-283. © 2003 by Elsevier Inc. All rights reserved.)
Argon laser trabeculoplasty

- Well tolerated and well established procedure
- Considerable pressure lowering effect
- ALT better response in exfoliation glaucoma (XFG) compared to POAG
 - Why?

- Later failures are common in XFG

Argon laser trabeculoplasty cont...2

- ALT a choice after medical therapy failure
- ALT may be first choice in older or non-compliant individuals

 - A degree of pigmentation is must for procedure to be effective
 - Not a problem in XFG as pigment is released from iris
Pre-operative care

- Pre-op apraclonidine or brimonidine is used
- Systemic acetazolamide is also recommended
 - These prevent laser induced early IOP spikes
- Untreated eyes timolol may also help in lowering IOP
- Topical anesthesia is sufficient for ALT

Post-operative care

- Ideally IOP check 6 hours after procedure
- Topical steroids or non-steroidal anti-inflammatory q.i.d. 4-7 days
- Re-evaluate 4-6 weeks to assess the success

Complications

- Transient blur – gonioscopic fluid
- Early and transient IOP spike
- Anterior uveitis (more common in XFG than POAG)
- Formation of peripheral synechiae
- Late loss of effect.
Selective laser trabeculoplasty

- Similar principle to ALT but selectively targets intracellular melanin in trabecular meshwork
- Shorter exposure time
- Very low power
- Wide area of application disruption decreased

- Because of non-destructive nature can be repeated
- Pre- and post-op similar to ALT

Surgical treatment

Main points

- Frequently needed in XFG
- In cases of very low target IOP, trabeculectomy surgery of choice
- Non-penetrating surgeries if cataract progression is a concern
- Trabecular aspiration may be considered in XFG if cataract surgery is performed
Case 2

- 73 YO W/F
- H/O XFS OU on multiple medications
- SP SLT OS 180 degree
- Referred for additional SLT

Ocular history

- Narrow angle PI OD
- OS not done
- IOP Max 30 OD 34 OS

- Difficulty with ocular medications
- Alphagan (Brimonidine)
- Lumigan (Bimatoprost)
- Xalatan
- Preserved timolol

Slit lamp and other anterior segment findings

- Mild injection in conjunctiva
- Iris
- OD patent peripheral iridotomy, loss of ruff, transillumination defects
- OS Loss of pupillary ruff

- CCT 502 and 503 OD and OS respectively
- IOP 23 mmHg OU 2:34 PM
Gonioscopy
- OD C30 r 2 + pigment
- OS B25 r 2 + pigment

A = Above Schwalbe line, totally occluded angle.
B = Behind the Schwalbe line, peripheral iris is in contact with TM.
C = Scleral spur Iris root at the level of scleral spur
D = Deep anterior ciliary body seen.
E = extremely deep

Optic nerve
- OU pink with good rim
- CD ratio
- OD .5 V and H
- OS .6 V and H
- DDLS OU 4
Overall within normal limits.
Optic disc size average
Asymmetry between optic nerve heads visible
Moorfields Regression Analysis within normal limits
RNFL - measured just outside the disc margin

Management
- 1) Ocular hypertension, monitor for progression
- Treatment continue
- Travatan Z OU qhs
- Trusopt 2% OU t.i.d
- Timoptic ocudose 0.5% OU t.i.d
- 2) Narrow angle Laser PI OS first, then SLT
- 3) Cataract and XFS observe