What is glaucoma?

• Definition:
 • "Ocular tissue damage at least partially related to intraocular pressure"
 • Where glaucoma is concerned agreement is limited among clinicians and scientists.

Competing interests

• None
Anatomy of anterior chamber
- Anteriorly by corneal endothelium
- Peripherally by trabecular meshwork, portion of ciliary body and iris root
- Posteriorly – anterior iris surface and pupillary area of anterior lens surface
- Deeper centrally than peripherally
Why do we need aqueous humor?
- Shape, optical properties, to globe
- Nourishment to cornea and lens
- Refraction 1.3332

Nutrition and aqueous humor
- The avascular structures of the anterior segment of the eye, the lens and the cornea
 - depends upon a constant turnover of the surrounding aqueous to deliver nutrients
 - wash out metabolic waste products.

IOP dynamics
- In healthy eyes
 - Production matched closely to outflow
 - Major variations in outflow because of trabecular meshwork
 - Uveoscleral outflow is relatively constant at various pressure levels
Resistance to outflow
- Little resistance offered by sheets of trabecular meshwork
- Unless debris and pigment accumulated
- Schlemm's canal little to no resistance
- External collector channels aqueous veins – negligible resistance
- **Location of highest resistance is**
 - Juxtacanalicular tissue
 - Endothelium of inner wall of Schlemm's canal

Ciliary body
- 1 of 3 portions of uveal tract
- Ciliary body
 - Muscle
 - Vessels
 - Epithelia lining ciliary processes
 - Autonomic nerve terminals

Ciliary body muscle
- Longitudinal fibers
 - Attach ciliary body to limbus
- Circular fibers
 - Anterior and inner portions of ciliary body
- Radial fibers
 - Connect longitudinal and circular fibers
Ciliary process

- Ciliary process is the functional unit responsible for production of aqueous humor secretion.
- Ciliary process are made of
 - 1) Capillaries
 - 2) Stroma
 - 3) Epithelia
- Ciliary process capillaries occupy the center of each processes.
- Two layers of ciliary epithelium surround stroma
 - Pigmented epithelium
 - Nonpigmented epithelium

Aqueous fluid

- Carefully controlled filtrate of blood produced by ciliary body
- Source of antioxidants for the corneal endothelium and the lens
- Carries oxygen similar to the interstitial fluid
- Helps maintain shape of globe
- Also serves as a shock absorber

<table>
<thead>
<tr>
<th>TABLE 1-3</th>
<th>COMPARISON OF SOME COMPONENTS OF BLOOD WITH AQUEOUS FLUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>Blood Concentration(^a)</td>
</tr>
<tr>
<td>Albumin</td>
<td>4.4 g/100 ml</td>
</tr>
<tr>
<td>Acetate</td>
<td>1.3 mg/100 ml</td>
</tr>
<tr>
<td>(vitamin C)</td>
<td></td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>27 mmol/liter</td>
</tr>
<tr>
<td>Calcium</td>
<td>4.8 mg/100 ml</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>195 mg/100 ml</td>
</tr>
<tr>
<td>Glutathione</td>
<td>2.9 g/100 ml</td>
</tr>
<tr>
<td>Glucose</td>
<td>98 mg/100 ml</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>15 g/100 ml</td>
</tr>
<tr>
<td>Hydrogen ions</td>
<td>/a</td>
</tr>
<tr>
<td>(as pH)</td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td>3.8 mg/100 ml</td>
</tr>
<tr>
<td>Potassium</td>
<td>105 mmol/liter</td>
</tr>
<tr>
<td>Sodium</td>
<td>150 mmol/liter</td>
</tr>
<tr>
<td>Thioctyglycine</td>
<td>88 mg/100 ml</td>
</tr>
</tbody>
</table>
Aqueous humor formation

- Aqueous humor secreted by ciliary epithelium of ciliary process and enters posterior chamber.
 - Diffusion-lipid soluble substances
 - Ultrafiltration-Water and water-soluble substances
 - Secretion-larger size substances or greater charge (80-90% aqueous humor formation)

- The aqueous humor then flows around the crystalline lens and through the pupil to anterior chamber.

Rate of aqueous humor production

- Ocular frurophotometry studies show circadian rhythm
 - 2.97 ± 0.77 microlitre per minute
 - 8AM to noon
 - 2.68 ± 0.64 microlitre per minute
 - afternoon
 - 1.28 ± 0.43 microlitre per minute
 - Midnight to 6 AM

Aqueous formation

- Active process—works against concentration gradient
- Two enzymes Na, K-ATPase, and carbonic anhydrase
- Inhibition of Na, K-ATPase or carbonic anhydrase decreases aqueous production—glaucoma management!
Aqueous humor and Na,K-ATPase

- NA, K-ATPase is predominantly bound to plasma membrane of non-pigmented epithelium
- Sodium ions pushed into anterior chamber to which the water follows.
- glaucoma management!

Aqueous Humor Outflow

- Aqueous humor leaves the eye passive bulk flow via two pathways.
 - Through the trabecular meshwork
 - Trabecular or Conventional route
- Inner wall of Schlemm’s canal into its lumen

Collector channels, aqueous veins and episcleral venous circulation
Aqueous Humor Outflow-2

- Uveoscleral or posterior or unconventional route
 - Across iris root, uveal meshwork and the anterior face of ciliary muscle

 - Through the connective tissue between the muscle bundles, through suprachoroidal space.

 - Out through sclera
Aqueous Humor Outflow-3

- Trabecular outflow 70-95%
- Uveoscleral outflow 5-30%
- Both total and trabecular outflow decline with age

Factors affecting IOP: Long-term

- Genetics
- Age
 - Increase of IOP with age
- Gender
 - M=F 20-40 yrs of age
 - Females greater increase in IOP post 40 yrs of age
- Refractive error?
Factors affecting IOP: Long-term
- Season – Higher IOP in winter compared to summer
- Blood pressure – increase in IOP
- Body weight

Factors affecting IOP: Short-term
- Diurnal variations
- Postural variations: Supine cause increase
- Exercise: Decrease in IOP
- Blinking and forceful closure causes increase
- Wearing tight neck tie
 - Valsalva maneuvers
- Mueller maneuver –
 - attempted inhalation against a closed glottis, which actually causes a decrease in IOP

Factors affecting IOP: Short-term-2
- Food and drugs
 - Alcohol
 - Caffeine
 - Tobacco
 - Heroin and Marijuana
Pattern of IOP

- Supine position IOP higher than seated IOP
 - Episcleral venous pressure is increased thus there is an increase in IOP
- 24 hour supine IOP measurement
 - Night time IOP still higher than day time IOP
 - Thus episcleral venous pressure cannot explain all the increase in IOP
 - Ambient light has – no effect

24-hour Pattern of IOP

- Both diurnal and nocturnal IOP curves are higher in glaucoma patients
- Absolute change from diurnal to nocturnal is less
- Difference between the groups with respect to IOP at night is reduced.
24-hour Pattern of IOP
Glaucoma vs. Healthy

- IOPs peak at 7:30 AM (glaucoma) IOPs peak at 5:30 AM (Ocular healthy)

- 5:30 AM to 7:30 AM
 - Ocular healthy decrease in IOP
 - Glaucoma increase in IOP

Summary

- IOP is a variable that is dynamic and in flux
- Various factors affect IOP measurements
 - Short term
 - Long term
- Secretion- accounts for major production in aqueous humor (AH)
- Sodium potassium ATPase and Carbonic anhydrase are important enzymes in production of AH
 - Can be altered - management of glaucoma

Summary cont...

- Patterns of IOP varies in ocular healthy when compared to glaucoma patients
- This may in part explain its pathophysiology
Optic nerve head
- Arbitrarily divided into 4 parts
 - Surface nerve fiber layer
 - Prelaminar region
 - Lamina Cribrosa region
 - Retrolaminar

Surface Nerve Fiber Layer
- Inner most portion
- Predominantly nerve fiber
 - Axonal bundle acquire more interaxonal glial tissue as this structure is followed posteriorly

Prelaminar Region
- Also called anterior portion of lamina cribrosa
- Predominant structure: nerve axons and astrocytes with significant increase in astroglial tissue
Lamina Cribrosa Region
- Fenestrated sheets of scleral connective tissue
- Astrocytes separate the sheets and line the holes
- Bundle of axons leave through these holes

Retrolaminar Region
- Decrease in astrocytes
- Myelin is acquired
- Axonal bundles surrounded by connective tissue
- Posterior limit is not clear but about 3 to 4 mm

Vasculature
- Arterial supply
 - Posterior ciliary artery main supply to optic nerve
 - Except for NFL that is supplied by retinal circulation.
Blood vessel supply surface NFL
- Main supply Arteriolar branches of CRA

Blood vessel supply to prelaminar and laminar regions
- Primary supply SPCA
- Also supply peripapillary choroid

Blood vessel supply to Retrolaminar region
- Medial and lateral perioptic nerve SPCA
Capillaries
- Derived from both retinal and ciliary circulation
- Resemble retinal capillaries
- Do not leak fluorescein may represent nerve-blood barrier
- Decrease in number posterior to lamina

Venous drainage
- Entirely through central retinal vein

Astroglial support
- Provides continuous layer between nerve fiber and blood vessels of optic nerve head
- Thick and thin astrocytes have been described
 - Thin: Accompany the axons in NFL
 - Thick: Direct axons from prelaminar to laminar region
Connective tissue support

- Lamina cribrosa
- Glaucoma pathogenesis takes place at level of lamina cribrosa

Lamina Cribrosa

- Porous region of sclera
- Specialized extracellular matrix
 - consist fenestrated sheets of connective tissue and occasional elastic fibers
- Hyaluronate is found in surrounding the myelin sheaths
- Hyaluronate decreases with age and further decreases with increase IOP

Analysis of pores of lamina cribrosa

- Healthy: round in eyes with physiologic cupping
- Glaucoma: Compressed pores
Regional differences of pores

Retinal nerve fiber layer
- Arcuate fibers occupy superior and inferior temporal regions.
- Axons from peripheral retina take more peripheral position.
- Papillomacular fibers spread approx 1/3rd of the distal optic nerve primarily inferior temporal.
- It also intermingles with extramacular fibers (may explain retention of central vision).

Axonal facts
- 700,000 to 1.2 million
- Large variation
- Count of axons increase with increase in area.
- Axon fiber diameter 0.65 to 1.10 µm
- Axons of all sizes are mixed throughout although mean diameter appear to be more common nasal segment.
Influence of age on ONH

- Size 95% before age of 1
- Connective tissue of lamina cribrosa incompletely developed
 - Greater susceptibility to damage
 - Potential for reversible cupping.
- Progressive loss of axons 4,000 to 12,000 a year (lower end most likely)

Influence of age on ONH-2

- Selective loss of fibers with age
 - Quigley and group.
 - Not confirmed by others investigators

Summary ONH

- Arbitrarily divided in to 4 parts
- Main blood supply posterior ciliary artery
- Venous drainage central retinal vein
- Pores of lamina cribrosa different at different regions
 - May explain vertical elongation
 - May explain selective resilience of macular fibers
Basics

- Glaucoma is a neurodegenerative disease characterized by the slow, progressive degeneration of retinal ganglion cells.
- Glaucoma neuroretinal rim decreases with concomitant increase in cupping at optic disc.
- Other neuropathies result in pallor of ONH rarely enlargement of cupping.
- Glaucoma damage is not limited to retinal ganglion cell axons, soma and dendrites.
 - Neurons in LGN and visual cortex are also lost.

Factors contributing to pathophysiology in glaucoma
What is the cause of glaucoma?

- 1858 Müller Elevated IOP cause direct compression and death
- 1858 von Jaeger Vascular abnormalities cause optic atrophy
- 1968 Axoplasmic flow problems
 - Lambert, Vogel, Zimmerman

Anatomic and histopathologic studies

- Direct method
- Limitations-specimens have advanced glaucoma
Excitotoxicity - Glutamate

- When glutamate injected-
 - Subcutaneously
 - Intravitreally
 - In-vitro – Petri dish
- Glutamate -mediated death seen when overstimulation of
 - NMDA receptors (N-methyl-D-aspartate)
 - Kainate glutamate receptors

Glutamate mediates photo receptor- bipolar cell and bipolar cell and RGC synaptic transmission

Glutamate toxicity

- Chronic low-dose glutamate is toxic
- Glutamate concentrations has been shown to increase in vitreous
 - Both monkeys and patients
- This theory is controversial.

Target-derived growth factors

- RGC survival depend upon certain neuronal growth factors, neurotrophins (e.g. brain-derived neurotrophic factor).
- Axonal compression at lamina cribrosa block retrograde axopalsmic flow.
- These include superior colliculus and pretectal nuclei
- Death may also result from deprivation of such factors
Nitric oxide
- Beneficial at certain concentration as a vasodilator.
- Neurotoxic in higher concentration
- Inhibits mitochondrial function and disrupts DNA

Important point to remember
- Each theory or hypothesis has a strong support but they are not exclusive of each other.

In-vitro models
- Experimental models of ocular hypertension.
- Optic nerve crush
- Ocular ischemia
 - All these models cause RGC death.
 - Interpret results with caution
Mechanical theory
- Physical alterations, misalignment of fenestrae, back bowing of lamina cribrosa may lead to obstruction.
- Compression of ganglion cell axon impairs the trophic factor axonal flow transport causing death of cell.
- Support to this theory damage with elevated IOP occurs despite intact blood vessels.

Vascular theory
- Ischemia at least plays a role in the obstruction of axoplasmic flow in response to elevated IOP.
- Retina depends on good blood flow for its metabolic needs
- Dysfunction in auto regulation.
- Difficult to establish as experiments are difficult to conduct.

Perfusion pressure
- Difference between arterial and venous pressure
- Mean ocular perfusion pressure = mean BP – IOP
- Blood vessel resistance also determines blood flow
- Autoregulatory mechanism is present in retinal vessels to maintain blood flow regardless of perfusion pressure
- However this mechanism fails in glaucoma
Two types of autoregulatory mechanisms exist

- Metabolic
- Myogeneic

Metabolic - Endothelial cells secrete these
- Vasodilators – nitric oxide
- Vasoconstrictors – e.g. endothelin-1

Myogenic - operates when blood flow above normal
- Mechanism unclear

Evidence in favor of vascular theory

- Delayed filling of superficial vessels of optic nerve in glaucoma
- Association of NTG with migraines
- Excessive peripheral constriction of vessels to cold-
 Raynaud’s phenomenon
- Nocturnal blood flow different in glaucoma patients
- Greater plasma concentration of endothelin-1

Mechanovascular theory

- Both mechanisms that is vascular and mechanical damage play a role in glaucomatous pathology.
Apoptosis

- Regardless of mechanism of damage to retinal ganglion cells—death of RGC in glaucoma is ultimately via apoptosis
- Genetically coded program—when activated leads to cell death.

Factors contributing to pathophysiology in glaucoma

Programmed cell death
- Occurs in:
 - Photoreceptors secondary to excessive light exposure
 - Conjunctival cells secondary to ocular preservatives
 - Corneal epithelial/keratocytic cells after wounding
Apoptosis (cont 2)
- Eliminates excess cells during organizational development; controls tissue size
- May accompany the development of cancer, immune reactions, or the presence of toxins

Apoptosis Process
- Cell decreases size; contents become concentrated ↓
 - nucleus fragments ↓
 - cell separates into small bodies ↓
 - these are phagocytosed w/o an inflammatory response

Summary on theories
- Various components may contribute to pathogenesis in glaucoma
 - Elevated IOP, Glutamate, vasoregulators, immunological effects, obstruction of axoplasmic flow may be involved in pathogenesis of glaucoma.
- It is not clear whether mechanical or vascular factors are primary.
- All these factors may be responsible to some degree.

All roads lead to apoptosis
Any method that prevents or slows the death of neurons is considered neuroprotective.

- In that definition, all treatments are neuroprotective.

However when one talks about neuroprotection:

- Prevent destructive cellular events
- Enhance survival of cells after damage

Drugs in neuroprotection

- None of the drugs that are approved for use in glaucoma patients
 - Indication of neuroprotection
 - Marketing claim of neuroprotection

So is there any evidence?
A pyramid diagram illustrating the levels data supporting use of a therapy, ranging from weakly relevant at the bottom to highly relevant at the top.

Any drug—to be deemed neuroprotective

- Four criteria
 - 1) the agent must have a target in the retina;
 - Yes they are present
 - 2) it must be neuroprotective in animal models;
 - 3) it must reach neuroprotective concentrations in the posterior segment after clinical dosing;
 - 4) it must be shown to be neuroprotective in controlled clinical trials.

Brimonidine- alpha-2-agonist
Are you a neuroprotective agent?
Neuroprotection in animal model
- Rat model
- IOP high for 10 days
- Then medications given subconjunctival (3 weeks)
- IOP not lowered
- 50% less damage with Brimonidine treated animals

Neuroprotection in animal model -2
- Ischemia model
- Ligation of ophthalmic vessels
- Pretreatment with
 - Alpha 2-selective agonist

Neuroprotection in animal model-3
- Optic nerve crush model
- Two weeks post treatment
- Rauwolscine is alpha-2-antagonist
Possible mechanism of neuroprotection of brimonidine

- Inhibit pro-apoptotic mitochondrial signaling
- Inhibition of pro-apoptotic signaling molecules, including
 - BAD (BCL-2 associated death promoter)
 - caspase-9,
 - and activation of anti-apoptotic molecules such as NF-kappaB

Summary neuroprotection

- Evidence building in favor of neuroprotection.
- Animal studies not exactly same as human glaucoma so it is difficult to extrapolate
- Considerations of various factors in management should be given when choosing medications
- Clinical trials are needed to substantiate further claims of neuroprotection

Clinical appearance of Optic Nerve Head
Physiologic Neural Rim

- Traditionally lot of emphasis is given on the cup.
- The neural rim is the tissue responsible for cupping and loss of visual field.
- C/D ratio is an indirect measure because large diameter nerve head may be associated with thinner rim but stable number of neurons.

Physiologic Neural Rim -2

- In a healthy optic disc neural rim is broadest
 - Inferiorly
 - Superiorly
 - Nasal
 - Temporally
- Larger disc area correlates positively neural rim

Retinal Nerve Fiber Layer

- Striations seen ophthalmoscopically
- Visible only after certain critical thickness is reached.
- Best seen at poles
 - Inferior
 - Superior
 - Temporal
 - Nasal
Retinal Nerve Fiber Layer -2
- NFL decrease with age
- Visibility of NFL correlates with width of neural rim and caliber of retinal artery

Peripapillary pigment variations
- Scleral lip: A thin, even white, 360 degree. Represents anterior extension of sclera between choroid and optic disc.
- Chorioscleral crescent or zone beta: broader, more irregular area of depigmentation. Represents retraction of RPE and thinning or absence of choroid.

Peripapillary pigment variations
- Zone alpha: Peripapillary crescent of increased pigmentation.
- Represents malposition of embryonic fold with double layer or irregularity of RPE.
- Found adjacent to zone beta or next to disc if zone beta is absent.
Peripapillary pigment variations
- A greater Zone beta area-to-disc area ratio found to be associated with greater risk of glaucomatous damage.

Disc hemorrhages and pathogenesis
- Supports vascular hypothesis
- Some sort of dysregulation
- Does not always mean worst glaucoma
Conclusions

- Understanding anatomy and physiology of aqueous humor dynamics and optic nerve helps understand pathogenesis in glaucoma
- Pathogenesis in glaucoma is complex
- Lowering pressure – is treatment of choice
- Neuroprotection concept needs further research
- Optic nerve is the site of damage
- More to come in POAG lecture...