Developmental Glaucoma & Ocular Hypertension

Naida Jakirlic, OD, FAAO Western University of Health Sciences College of Optometry

October 4, 2015

Learning Objectives

- Distinguish between congenital, infantile, and juvenile glaucoma
- Differentiate between primary and secondary developmental glaucomas
- Discuss the pathophysiology of developmental glaucoma
- Review the optimal treatment and prognosis of developmental glaucoma
- Define ocular hypertension
- Review major points from the Ocular Hypertension Treatment Study (OHTS)
- Identify key clinical pearls from OHTS

Introduction

- Glaucoma is much less common in children than adults
 - 1 in 10,000 live US births
- Consequence of glaucoma is much more severe in children
- Glaucoma surgery has drastically improved visual prognosis for congenital glaucoma
- IOP control is a lifelong goal requiring perseverance by patients, their parents, and doctors

Congenital Glaucomas

- Group of diverse disorders in which abnormal high intraocular pressure results from developmental abnormalities of the anterior chamber angle
 - May or may not be associated with systemic anomaly
 - Hereditary with variable incidence in different populations
 - M>F

Terminology

- Congenital glaucoma
 - Birth to 3 months
- Infantile glaucoma
 - 3 months to 3 years
- Juvenile glaucoma
 - 3 years to16 years

Pathophysiology

- Exact mechanism of primary congenital and infantile glaucoma unknown
 - Clinical and histopathologic observations of anterior chamber show that anatomic relationship between iris, trabecular meshwork, and ciliary body is immature
 - Principal defect: failure of one or more steps in the normal development of the anterior chamber angle, leading to goniodysgenesis at the level of the TM
- Secondary glaucomas of childhood display profound developmental abnormality of the anterior chamber angle
 - Iridodysgenesis
 - Corneodysgenesis

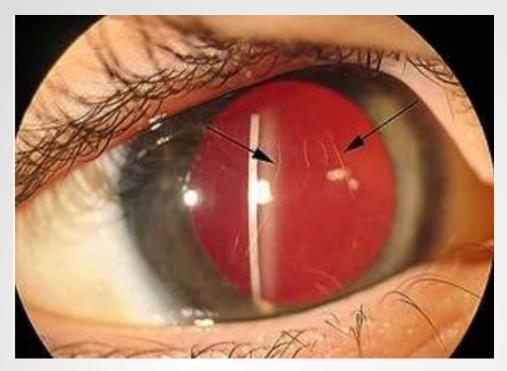
Prognosis

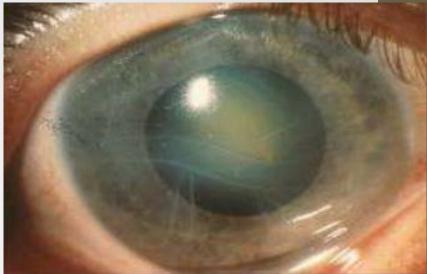
- Glaucoma present at birth
 - Difficult to treat
 - 50% of eyes become legally blind
- Corneal diameter > 14: poor prognosis
- Infantile glaucoma presenting between 3-12 months of age
 - Favorable prognosis
 - 80-90% have good IOP control after angle surgery
- Vision loss is multifactorial
 - High myopia
 - Corneal scarring
 - Lens subluxation

Epidemiology

- Primary congenital glaucoma
 - 50-70% of the congenital glaucomas
 - 1 in 10,000 births
 - Bilateral in 65-80%
 - 90% are sporadic, 10% are familial
 - Autosomal recessive with incomplete or variable penetrance
 - 20% diagnosed as newborn
 - 60% diagnosed by 6 months
 - 80% diagnosed within 1st year of life
 - Results in blindness in 10% of cases
 - Results in reduced vision in 50% of cases

Presentation


- Signs and symptoms variable depending on child's age, severity of glaucoma, and secondary corneal abnormalities
- Clinical triad
 - Epiphora
 - Blepharospasm
 - Photophobia
- Other findings
 - Myopia
 - Rapid cupping may be reversible in infants with IOP normalization due to relative immaturity and elasticity of lamina cribrosa


Clinical features

- Corneal edema
- Corneal enlargement
- Descemet's breaks Haab's striae
- Sclera becomes thin and appears blue due to underlying uveal tissue
- Anterior chamber becomes deep
- Iris may show iridonesis
- Lens becomes flat due to stretching of zonules, and may subluxate
- Axial myopia

Corneal enlargement

Age	Normal	Suspicious
Birth – 6 months	9.5-11.5 mm	>12 mm
1-2 years	10-12 mm	> 12.5 mm
> 2 years	< 12 mm	> 13 mm

Evaluation

- Typically done under general anesthesia if glaucoma is suspected
 - Caution: most anesthetic agents and sedatives have IOP lowering effects
 - Normal IOP under anesthesia: 10-15 mmHg
- Evaluation must include
 - Corneal diameter measurement
 - IOP measurement
 - Gonioscopy
 - Optic nerve assessment

Differential diagnosis

Tearing & conjunctival injection

Nasolacrimal duct obstruction

Cloudy cornea & Haab's striae

- Corneal dystrophy
- Forcep trauma
- Infectious keratitis

Enlarged cornea

- Primary megalocornea
- Unilateral high myopia

Photophobia & blepharospasm

- Uveitis
- Keratitis
- Corneal abrasion
- Cone dystrophy

Secondary developmental glaucomas

Anterior segment dysgenesis

- Axenfeld Rieger's anomaly
- Peter's anomaly
- Aniridia
- Phacomatoses
 - Neurofibromatosis
 - Sturge-Weber syndrome
- Ocular tumors
- Inflammatory/infective
 - Congenital rubella, syphilis
 - CMV
- Ocular disease
 - PHPV
 - ROP

Chromosomal/systemic disease

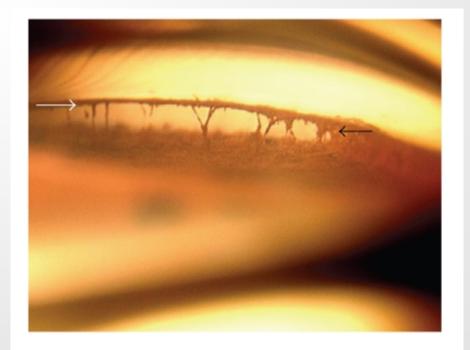
- Down's
- Turner's
- Rubinstein-Taybi
- Pierre Robin

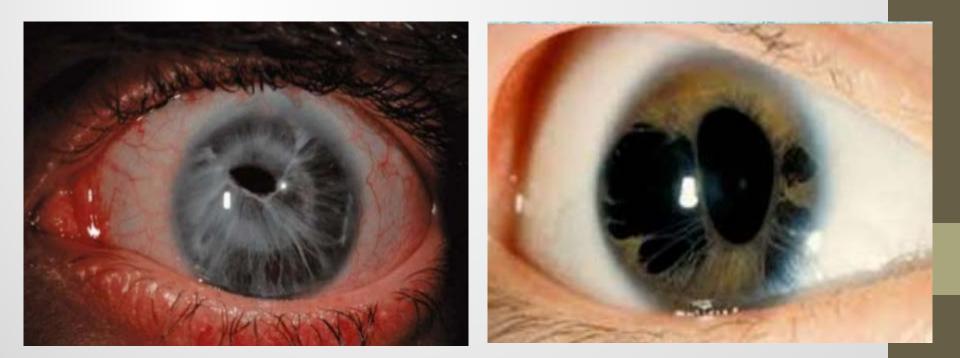

Metabolic disease

- Lowe's syndrome
- Homocystinuria
- Mucopolysaccharidoses

Connective tissue disorders

Marfan's Weil-Marchesani Ehler-Danlos


- Axenfeld anomaly
 - Anteriorly displaced Schwalbe's line
- Rieger anomaly
 - Anteriorly displaced Schwalbe's line with iris adhesion
- Rieger syndrome
 - Ocular anomalies with systemic developmental defects

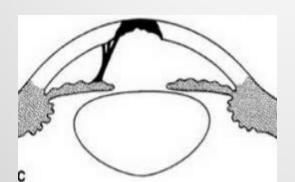

Anterior chamber angle

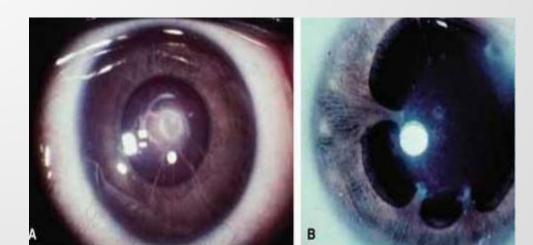
- Prominent Schwalbe's line
- Iridocorneal adhesions
- Anterior chamber angle is open and TM is visible, but SS usually obscured by peripheral iris that inserts into SL

Iris

- Mild stromal thinning to marked atrophy
- Corectopia
- Ectropion uveae

50% will develop glaucoma, typically in childhood or early adolescence


Posterior embryotoxon	
Iris stromal hypoplasia	7 Iris strands
resulting in pseudopolycoria	
	Corectopia


Systemic anomalies

- Dental anomalies
 - Microdontia
 - Hypodentia
- Facial anomalies
 - Hypertelorism
 - Maxillary hypoplasia with midface flattening
 - Telecanthus
 - Broad flat nose

Peters anomaly

- Present at birth
- Usually bilateral
- Most cases are sporadic or AR
- Defects of ear, auditory system, heart, genitourinary system, spine, and musculoskeletal system
- Central corneal abnormality
 - Defect in Descemet's membrane and corneal endothelium
 - Thinning and opacification of corresponding corneal stroma
 - Iris adhesions

Peter's anomaly

- May be associated with Axenfeld-Rieger syndrome
- May be associated with kerato-lenticular contact
- 50-70% of patients will develop infantile glaucoma



Peter's anomaly

- Systemic association
 - Craniofacial anomalies
 - CNS anomalies
 - Peter plus syndrome
 - Short-limbed dwarfism
 - Cleft lip/palate
 - Learning difficulties

Aniridia

- Bilateral developmental disorder
- Absence of normal iris due to abnormal neuroectodermal development
- Classification
 - AD: 2/3
 - Sporadic: 1/3
 - AR: rare (1%)
- Variable severity

Aniridia: associated ocular findings

- Subluxation of lens or aphakia
- Foveal hypoplasia
- Nystagmus
- Choroidal coloboma
- Optic nerve hypoplasia
- 75% develop glaucoma in late childhood and adolescence
 - Synechial angle closure due to pulling of rudimentary iris tissue by contraction of pre-existing fibers

Phacomatoses

Sturge-Weber Syndrome

- Glaucoma develops in 30% of patients, ipsilateral to facial hemangioma
- Facial hemangioma (nevus flammeus), choroidal hemangioma, and intracranial meningeal angiomas
- No gender or race predilection

Neurofibromatosis

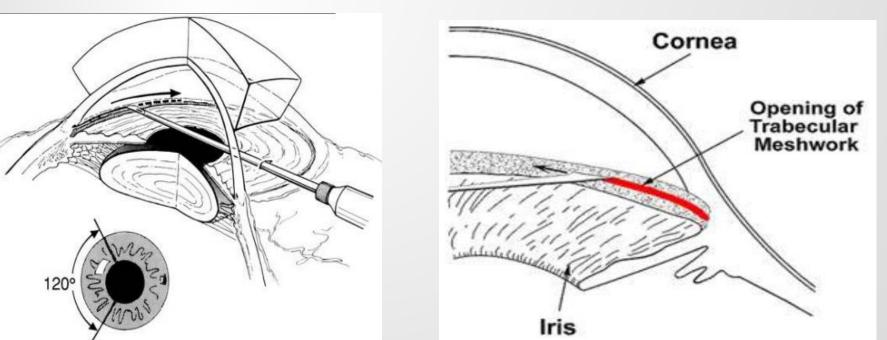
- AD inheritance
- Neurofibromas form in CNS, nerves, skin, and mucus membranes
- Glaucoma uncommon
 - Unilateral
 - If plexiform neuroma present, 50% develop glaucoma
 - Surgical success rate much lower than for primary congenital glaucoma

Management of developmental glaucoma

- Surgery: definitive treatment
- Medical therapy provides supportive role to reduce IOP and clear cornea to facilitate surgery
- Laser therapy has very limited role
- Goniotomy and trabeculectomy first line treatments
- Refractory congenital glaucomas
 - Trabeculectomy with anti-fibrosis drugs
 - Glaucoma drainage implants
 - Cyclodestructive procedures

Medical therapy

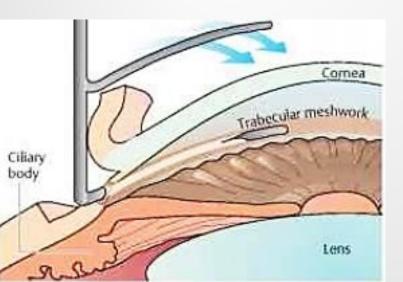
- Beta blockers
 - Used with extreme caution in neonates due to possibility of bronchospasm, apnea, and bradycardia
 - Must rule out cardiac abnormalities and bronchial asthma before initiation
 - Use of 0.25% recommended in children

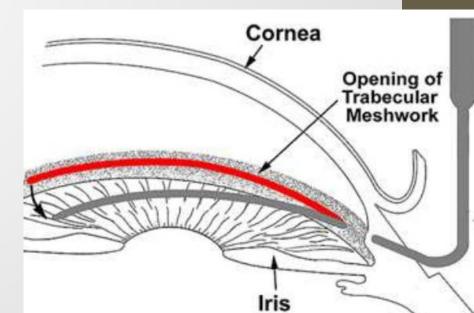

Medical therapy

- Alpha agonists
 - Limited use in children due to CNS depression
- Carbonic anhydrase inhibitors
 - Orals are more effective in IOP reduction, but produce more side-effects, including diarrhea, lethargy, poor appetite, and metabolic acidosis
- Prostaglandin analogs
 - Little effect on IOP in congenital glaucoma
- Miotics
 - Ineffective for primary congenital glaucoma

Surgical treatment

Goniotomy


- Blade is inserted through peripheral cornea and used to make a linear incision through the TM 1/3 the circumference of the eye
- Corneas must be relatively clear
- Reported rate of success: 80%



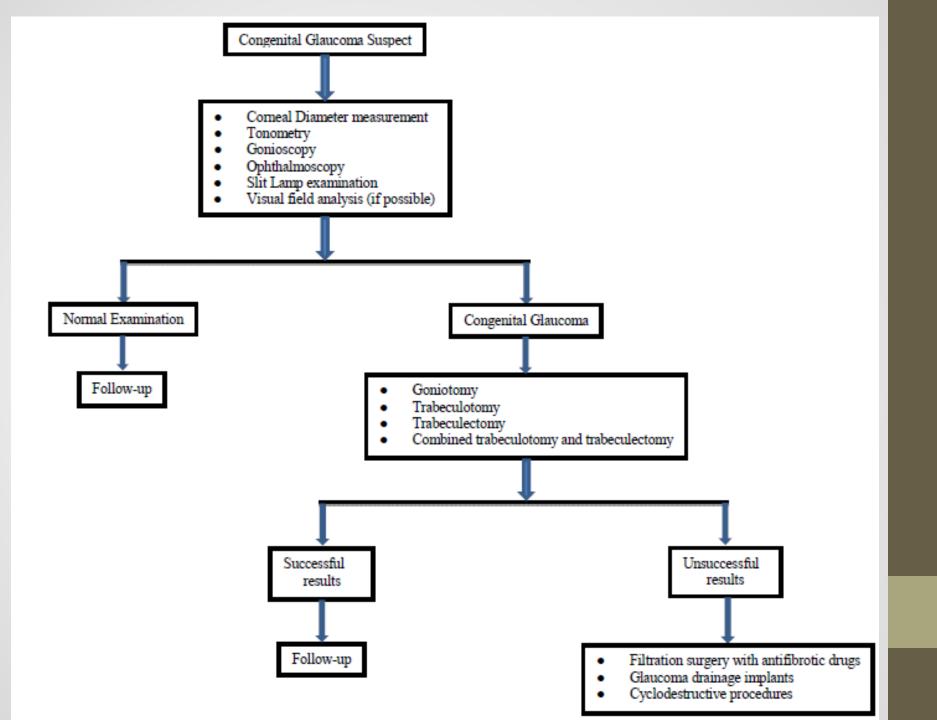
Surgical treatment

Trabeculotomy

- If corneal clouding prevents visualization of the angle, or goniotomy has failed
- Scleral flap created, dissection into Schlemm's canal is made, and tabeculotome is used to open the TM
- Usually 120-140 degrees of the TM can be treated
- Success rate: 90%

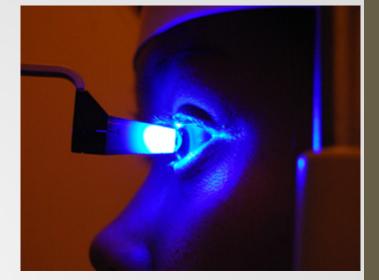
Surgical treatment

- Trabeculectomy
 - Full thickness opening made in the sclera for outflow of aqueous
 - A partial thickness scleral flap covers the opening and conjunctiva overlies the flap
 - Long-term success rate: 50%
 - Due to more aggressive wound healing response in infants and children


Refractory pediatric glaucomas

Trabeculectomy with anti-fibrotic agents

- Mitomycin-C and 5-Fluorouracil most commonly used
- Decrease scarring of blebs
- Increase risk of infection
- Aqueous drainage implants


Cyclodestructive procedures

- Selectively used for primary congenital glaucomas uncontrolled with conventional surgery and medical therapy
- Ciliary epithelial ablation is produced by trans-scleral cyclophotocoagulation
- Indications: blind painful eye, rapidly decompensating cornea

Take-home

- Main goal in managing congenital glaucoma is early diagnosis and early surgical intervention
- Close life-long follow-up of these patients is critical
- Degree of ocular damage depends on length of period between appearance of the first ocular sign and surgery, or failure of surgery to regulate IOP

OCULAR HYPERTENSION

Ocular hypertension (OHTN)

- IOP <u>></u> 21 mmHg
- No detectable VF loss
- No detectable optic disc or RNFL damage
- Open anterior chamber angles
- No ocular or systemic cause of increased IOP

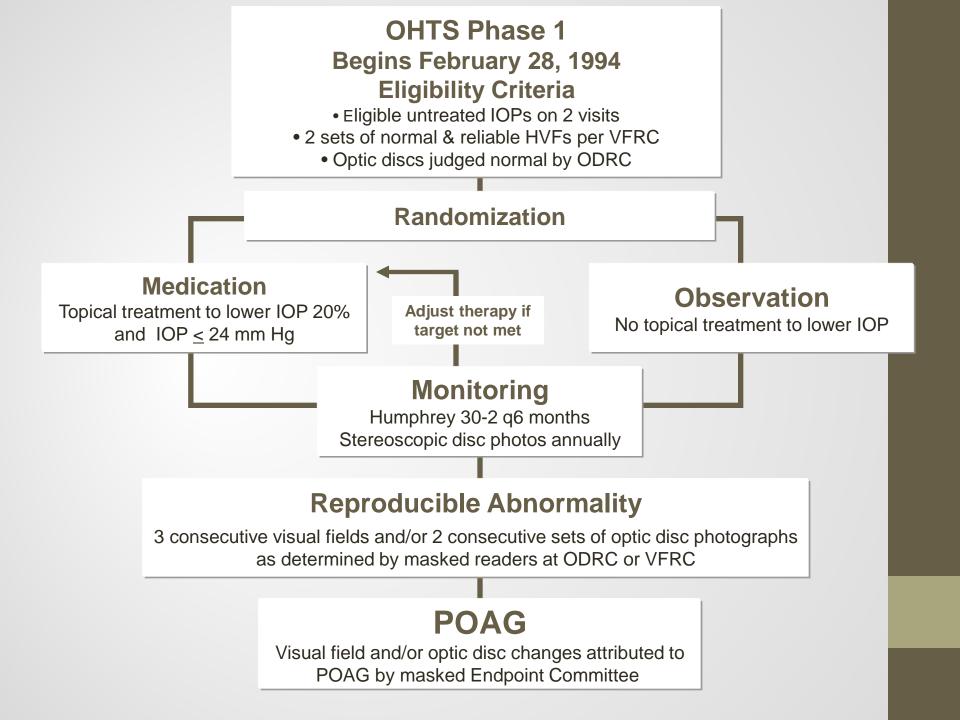
Epidemiology

- 119 million people in US over age 40
 - 4-8% have ocular hypertension
- Number will increase with aging population
- Considerations:
 - Managing a large group of people has substantial costs for examinations, tests, and treatment

OHTN - considerations

- Elevated IOP is the leading risk factor for development of POAG
- IOP is the only modifiable risk factor for POAG
- Patients can lose substantial proportion of RNFL before POAG is detected by standard clinical tests
- However
 - does treatment of OHTN prevent POAG?

Ocular Hypertension Treatment Study (OHTS) Primary Goals


- Evaluate the safety and efficacy of topical ocular hypotensive medication in delaying or preventing development of POAG in individuals with elevated IOP
- Identify baseline demographic and clinical factors that predict which participants will develop POAG

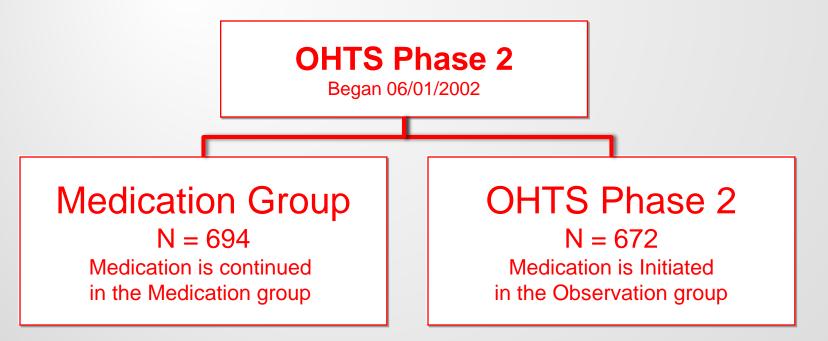
OHTS entry criteria

- Age: 40-80
- Normal VF (Humphrey 30-2)
- Normal optic discs
- Untreated IOP
 - 24-32 mmHg in one eye
 - 21-32 mmHg in fellow eye

OHTS – POAG Outcome

- Development of reproducible VF abnormality on minimum of 3 VF's, or
- Reproducible optic disc deterioration attributed to POAG

Baseline characteristics


	Baseline Characteristics N=1,636
Age (mean ±SD)	55.4 ±9.6 SD
White	70%
African American	25%
Hispanic	4%
Other	1%
Sex	
Male	43%
Female	57%
IOP, mm Hg	24.9 ±2.7 SD
Vertical CD	0.39 ±0.2 SD
ССТ	572 ±38.4 SD

OHTS Phase 1 summary

- Medication produced 20% reduction in IOP
- Medication reduced incidence of POAG in OHTN patients by more than 50% at 5 years
 - 9.5% in observation group
 - 4.4% in medication group
- Implications
 - Decreasing IOP by 20% from Tmax decreases progression of OHTN into POAG by 50%

OHTS Phase 2

- OHTS phase 1: proof that medication reduces incidence of POAG in patients with OHTN
 - No indication *when* to begin treatment
 - No indication whether *all* OHTN patients should receive early medication
 - No indication whether there is a penalty for delaying medication

OHTS Phase 2

- After 7.5 years of observation, participants originally randomized to observation group start medication
- Compare incidence of POAG at 13 years
 - Delayed treatment group
 - Early treatment group

Phase 2 Summary

- Increased cumulative incidence of POAG at 13 years (delayed vs early treatment)
 - 22% vs 16%
- More eyes with structural and functional damage
 - 8% vs 5%
- More participants with bilateral disease
 - 6% vs 4%

OHTS Summary

- Early medical treatment reduces cumulative incidence of POAG
- Absolute effect is greatest in high-risk individuals
- Little absolute benefit of early treatment in low risk individuals
- Individualized assessment of risk is useful to patients and clinicians
- Do not adjust IOP based on CCT

OHTS: pachymetry – 3 outcomes

- Thin: < 555 HIGH RISK
 Average: 555-588 No changes in risk
- Thick: > 588 Low risk

Applied to patients with ocular hypertension

Corneal Hysteresis (CH)

- CH: difference in inward and outward pressure values obtained during the dynamic bi-directional applanation process employed in the Ocular Response Analyzer as a result of viscous damping in the cornea
- Glaucoma subjects have lower CH than normals
 - CCT is an independent risk factor for glaucoma risk
 - CH is even more powerful estimator of glaucoma risk

Independent risk factors for development of POAG

- Age
- IOP
 - IOP > 22 mmHg is a positive predictive factor for development of POAG
- CCT < 555 μ
 - Relative risk of POAG increased by 81% for every 40 μ decrease in CCT
- Vertical C/D ratio (> 0.6)
 - Increase in CDR by 0.1 leads to 32% increase in relative risk
- PSD
 - 0.2 dB increase in PSD led to 22% increase in relative risk of development of POAG

Clinical pearls

- Most OHTN patients are at low risk for developing POAG
- Most low risk OHTN patients can be followed without treatment
- Delaying treatment by 7.5 years resulted in only a small absolute increase in POAG in low risk patients

Clinical pearls

- Lowering IOP by 20% from Tmax delays or prevents conversion into POAG in high-risk patients
- High-risk OHTN patients may benefit from more frequent examinations and early treatment, taking into consideration:
 - Patient age
 - Health status
 - Life expectancy
 - Personal preference

Clinical pearls

- Consider burden of long-term treatment
- Consider patient's risk of developing POAG
- Consider patient's likelihood of being helped by medication
- Consider patient's health status and life expectancy
- Consider patient's risk factors

Indications for treatment

- High risk patients: multiple risk factors
- Monocular patients
- Unreliable VF or ONH assessment
- OHTN patient who desires treatment
- OHTN patient who has developed a vascular occlusion in either eye

