Open angle glaucoma and advanced technologies

> Pinakin G Davey OD, PhD, FAAO Professor

Disclosure

- Principal investigator for FDA iVue OCT trial
- Principal investigator Topcon FDA trials
 - FDA Topcon NDB Maestro and OCT 2000
 - FDA Topcon OD and Retina study
 - FDA NDB II study
 - FDA Maestro AP II study
- Principal investigator FDA Zeiss GDx PRO NDB study
- Consultant for Optovue and Topcon
- Speakers bureau Sanofi- Genzyme and Allergan

Objectives

- 1) Compare and contrast the differences between the new tonometer devices like the Pascal Dynamic contour tonometer and Ocular Response Analyzer with the gold standard in tonometry Goldmann applanation tonometer.
- 2) Understand and interpret and use of imaging technology and visual fields in management of primary open angle glaucoma
- 3) Cases

66 B/F

VA 20/40 OD, OS 20/30 OU
Blur past few months, constant
Previous history elevated IOPs (3 annual visits)
Range OD 20-24 OS 19-23

IOP today 22, 20 (OD, OS)

Ocular hypertension • Pre-perimetric glaucoma

Intraocular pressure

- Diagnosis- not helpful
- Treatment- only proven method
- Progression- very closely associated with IOP
- Risk factor- without a doubt most important risk factor
- In fact only alterable risk factor!

Various tonometers

- Indentation-Schiötz tonometry only theoretical interest
- Applanation
 - Goldmann, Perkins
 - Mackay-Marg-Tonopen
 - Pneumotonometer Non-contact
- Others
 - Dynamic Contour Tonometer
 - Ocular Response Analyzer
 - 7CR
 - Diaton
 - Rebound tonometer

Inherent differences in types of tonometers

- Contact area and region
- Anesthetic required/not required
- Non-contact or contact
- portable or hand held
- disinfection required
- observer dependence/independent

Pascal -Dynamic Contour Tonometer

Dynamic contour tonometer

Dynamic contour tonometer (cont 2)

- Digital output
- Continuous recording of IOP waveform

Dynamic contour tonometer (cont 3)

- The corneal biomechanical contribution to IOP measurement is largely removed when the cornea takes up the shape of the tip.
- Tip radius of curvature is 10.5mm.
- Pressure sensor is 1.5 mm.

OPA and NTG

Ocular Response Analyzer

•IOPG - Goldmann Correlated IOP •IOPCC - Corneal Compensated IOP •CH - Corneal Hysteresis •CRF - Corneal Resistance Factor •CCT - Central Corneal Thickness

Classifying Corneal Pathologies

Corneal Hysteresis but Not Corneal Thickness Correlates with Optic Nerve Surface Compliance in Glaucoma Patients

Anthony P. Wells, 12 Durid F. Garway-Heath, 3 All Poostchi, 1 Tracey Wong, 2 Kenneth C. Y. Chan, 2 and Nisha Sachdev 2

Low corneal hysteresis may be an independent indicator of glaucoma

Heidelberg Retina Tomograph

- First
- Relatively unchanged
- Confocal scanning laser ophthalmoscopy

Moorfields Regression Analysis

- Prior knowledge that NRR is related to optic disc size.
- NRR may possibly decline with age.
- Knowledge of glaucomatous disease process.

Relationship between NRR and optic disc

Log NRR and optic disc

Optic disc and statistical limits

GDx-VCC and GDx Pro

I he amount of retardation from the RNFL is directly proportional to the RNFL thickness^{1.} Retardation =Birefringence* thickness

¹ Weinreb et al. Arch Ophthalmology 1990; 108: 557-560.

TSNIT Map and Table of parameters

TSMT CO 08 Parameters Restand Ver 63.52 TSNIT Average 64,13 Superior Average 88.24 81.81 79.37 73.95 Internal Average TSNIT Std. Dev 29.54 26,13 inter-Cys Symmetry 0.95 671 4 Ħ

Best diagnostic parameter in identifying glaucoma using GDx is- NFI

Optical coherence tomography

- It has become the mainstay of all the imaging
- It is indeed at a great point now
 - Prior devices were changing rapidly
 - Did not have good software
 - Many imaging errors
 - Numerous unknowns on how to use technology

Comparison of Time versus Fourier domain

OCT-Principles

Time Domain OCT

- Sequential
- 1 pixel at a time
- 1024 pixels per A-scan
- 400 Å scans per second
- 512 A-scans in 1.28 sec
- Slower than eye movements

Fourier Domain OCT

- Simultaneous
- Entire A-scan at once
- 2048 pixels per A scan
- 26 to 80 K A scans per second
- 1024 A-scans in 0.04 secFaster than eye movements

Cirrus™ HD-OCT Software Version 5.1

Glaucoma – RNFL Thickness Analysis

- Optic Disc scan
 Cube scan with 6mm x 6mm area

Thickness map

Deviation Map

Tomogram

Global parameters

	00	05
Average RNFL Thickness	:88.µm	. ET 400
AMPL Symmetry	612	
Rin Area	0.94 mm ⁺	Q SH mm?
Disc Area	1.52 mm ¹	1.45 mm ²
Average C/D Ratio	1.66	872
Verticel CID Ratio	0.58	12.67
Cig: Volume	9.225 mm ¹	0.230 mm

Arrangement of fibers in retina

Macula analysis Ganglion cell complex (Optovue)

Optovue) NFL+ GCL+IPL Ganglion cell analysis (Zeiss)

Case

59 BF

- VA 20/20-3 OD, OS
- Refraction
 - Splan
 Oynetic
 Art.
 VB
 ASD

 CD
 1.71
 2011
 2021
 2035

 CD
 4.000
 40.75
 Tag
 2011
 2035
- Systemic history hypertension diagnosed 1 year
- No other complaints
- IOP 15 mmHg OU

110

Accutome Pach V Date: Mon 03/07/2011 Time: 05:26 PM

Patient's Name: _

g OD	OS
480	473
481	481
478	487
464	473
483	509
478	488
0	0
T 480	484
15	15
18	18
	9 OD 480 461 478 484 483 479 0 T 480 15 18

-

Open angle glaucoma

Your thoughts?

